New motor mounts

This is what I normally use for motor mounts.  It weighs about 23 grams and is made of HDPE and FR10 G4.

I designed a 3d printable motor mount and printed it out of black abs.  It allows me to locate the motor about 4cm further out on the arm.  The downside is it weighs about 29grams.  I know that doesn’t sound like much but it adds up quickly with the need for 6 of them in a hexacopter.  I haven’t decided whether I am going to use them or not.

Introducing the 600mm+ Folding Hexacopter

Here it is!  The folding hexacopter I have been working on.



  • Integrated esc and component power distribution plate
  • supports 600mm to 750mm hexacopter configurations
  • can be built as folding or non-folding hexacopter
  • center cut out for easy component access
  • adjustable height battery platform allows easy access to varied electronic components and adds strength to the design
  • 4 booms fold for compact storage and transportation


Dry Harder

I came home from a relaxing flying session on Friday night to hear my wife muttering something about a broken dryer as we were just about to head out for dinner.  What?  A broken dryer?  You can’t expect me to leave now.  I said give me 5 minutes and went and got my tools.  45 minutes later with the washer and dryer both moved into akward positions exposing years of lint and other lost little items I had diagnosed the fault.  The meter on the thermal fuse read open.  Not good.

On Saturday morning I headed to AMRE supply and they hooked me up with a new thermal fuse.  I also replaced the safety thermostat for good measure as this was recommended by “experts” online.  Here are some pictures.

Best of Both Worlds

In my last hexacopter post ( I was torn on whether to build a folding or non-folding version of the hexacopter.  A lightbulb went off shortly after making the post and I decided I could make a single frame plate set to support both.

This is what I came up with

This will support the pieces for a folding and non-folding frame.  I gave it a couple of coats on both sides with the flat black spray paint I used last time.  I am going to use the same process to laser off the paint and then etch it in ferric chloride.

Here are some pics after a coat and then a second.


Folding hexacopter

I’ve been working on a hexacopter design on an off for a couple of weeks now.  I’ve been considering making 4 of the booms foldable so it could be transported easier.  I’ve done this before with a quadcopter and 2 folding booms.   Here is what I have come up with so far.  The top and bottom 2 booms fold.  This is the baseplate and will be used for power distribution.  I’m not sure I’m sold on making it foldable as I don’t really think you gain that much. I am still going to have the high profile landing gear with a big camera hanging under it.  It’s a fair amount of work to make the baseplate and I’d prefer not to have to make another non-foldable version if this one doesn’t work out.

Here is the top plate

Laser Tube Hanger for 50W ebay laser

To say that the laser alignment on my ebay laser was poorly done would be an understatement.  All of the mirrors were positioned in a way that was impossible to have the beam centered in all of the mirrors.  I decided to completely redo the alignment.  I started at the laser tube end.    In the following picture you can see the original stock mounting bracket on the left and my new one on the right (ignore the new one for now)

The problem with the stock bracket is that it uses spacers to adjust the height.  Guess what?  They didn’t include any extra spacers and the height was wrong.  The tube was too high and sending the beam into the top 1/3rd of the mirror.  So the over engineering obsessive maker in me saw this as the perfect opportunity for a new project and this was born…

Not wanting to leave well enough alone I decided that it would be nicer to add some fancy knobs for adjustment and to lock the tube in place and behold!

This design would allow me to make smooth and precise adjustments of the tube using thumb knobs with the ability to lock the tube in place!  The design uses 2 zip ties to hold the tube into the craddle.  The craddle is lined with some foam servo tape.  I leave the backing on the side that the tube rests on so the tube can expand and contract if it so desires.

Conclusion – Overkill?  Maybe.  You shouldn’t expect anything less from The Xnaron Project (you have been warned).


600mm Quadcopter


I have been fine tuning my quad copter design now and it’s seen quite a few iterations.  This is number 5.  It is built using G10 FR4, HDPE, 12mm carbon fiber tubes and double side 1/16″ copper clad.  This quad is meant to be a simple sport flier but could easily be extended to carry a camera or FPV gear.  I’m using my Aurora 9 TX as usual with the proven optima 7 RX on this one.

When I design parts for CNC Routing I use Vcarve Pro. I am very happy with this software and it has been well worth every dollar I spent on it. When I make parts to be 3D printed I use OpenSCAD the programmers CAD.

Motors and ESC’s and Props

I am using Turnigy Plush 25amp ESC’s flashed with the simon k tgy.hex you can read about it here.  The motors are these Hacker Style 20-22L 924KV motors.  As for props I’m using the trusted APC 10×4.7SF and 10×4.7SFP.


I have had great success with the KK version 1 controllers on both tricopters and quadcopters.  I am planning to put the KK2.0 Multirotor controller in this one.  I have been flying the Naza with GPS on my other hexacopter and quadcopter and absolutely love it.  It is the best flight controller I have ever tried (and I have tried many).  I am mounting the controller using the rubber isolation mount stand offs I bought from

Frame Plates

Anyhow this version 5 quad sports the new power distribution plate that I prototyped on my 550mm quad that uses the DJI arms.  I created it using this technique

The top plate is cut out of 1/16″ G10 FR4 and painted using the same Truck Bed Liner in a can that I used to paint the power distribution board and boom motor mount plates.  The truck bed liner makes a nice hard surface and sticks really well to the G10 FR4 with light sanding only.

Motor Arms

Orientation is always challenging on a quad and I found that the multicoloured arms on the DJI quads/hexas helps a lot.  Normally I make the motor and frame boom mounts out of 1/2″ HDPE.  I cut the shapes out on my cnc router then create a pocket and setup a program to drill the two 1/8″ holes.   I tried to drill some by hand using a template and it was impossible to keep them straight.  I decided to make two of the booms white and 2 of them black.  This meant that I needed to make some frame and motor boom mounts out of white HDPE.  I has some 1/2″ laying around from another project and used that to make the parts.  The 12mm carbon fiber tubes come in black only.  I used some white 1/2″ heatshrink on 2 of the booms to make them white.  I left the G10 FR4 the natural yellow color on the motor mounts for these booms as I did not have any white paint.

 Landing Gear

The landing gear is made from 1/2″ HDPE.  I use two 0.120″ carbon fiber rods with 4 3D printed end caps.  The landing gear is unbreakable and doesn’t weigh very much.

Making a PCB using a Laser Engraver

I’ve been building multirotor copters for quite a few years now.  One of the frustrating things about the build is the need to create a wiring harness to supply power from the battery to all the speed controls.  I decided to try and build the power distribution into the bottom plate.  The first one I built I used my CNC router to take the copper off the PCB.  I didn’t like this method as it also took a little bit of the PCB material away as well.  I decided to try a different method.

I used the CNC router to drill all the holes and cut the board out from the copper clad PCB stock material.

Then I spray painted both sides of the PCB with this flat black spray paint.

While I let the paint dry for about 20 to 30 min I imported the dxf vectors into the laser engraver software.  I am using a 50W laser engraver I bought from an ebay vendor.  the software is actually quite good.  I’ll post more about it later.  I setup the software to do a “scan” engrave of the areas I wanted copper removed from.  I did 2 passes with the laser.  The first pass was 200mm/s at 100% power and took about 25 min.  The second pass was set to 450mm/s with power level of 100% and took about 12 min.  The second pass helps to clean up the residue left from the first pass but might be able to skip it in the future.

Even with the second pass there is still some residue on the board.

I used some alcohol on a cloth to remove the residue.  Be careful not to remove the paint. The board is now ready for etching with ferric chloride.

Here is the board after etching.

I removed the left over paint from both sides with acetone to expose the copper.  It came off very easily rubbing it with a cloth.

Next I masked off the solder pads with electrical tape.

Now for the insulation coat I sprayed both sides a couple of times with black truck bed liner in a can.  I lightly sanded both sides with 1500grit paper before painting.  This bed liner paint provides a really hard coat.  In this picture I have already removed the electrical tape to expose the solder pads.

Here is a shot of the quad copter being assembled after the esc’s and battery connector were soldered on.  I used a liquid mask insulator to cover all the joints on the PCB.

In summary I’d say this was a complete success and I’ll be doing future boards using the same process.

I built a hexacopter using the same method Folding Hexacopter

Here is a video of a flight of the folding hexacopter with the PCB power distribution made with the above method.